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Abstract

Variability of heat stress illness (HSI) by urbanicity and climate region has rarely been considered 

in previous HSI studies. We investigated temporal and geographic trends in HSI emergency 

department (ED) visits in CDC Environmental Public Health Tracking Network (Tracking) states 

for 2005–2010. We obtained county-level HSI ED visit data for 14 Tracking states. We used the 

National Center for Health Statistics Urban-Rural Classification Scheme to categorize counties by 

urbanicity as 1) large central metropolitan (LCM), 2) large fringe metropolitan (LFM), 3) small–

medium metropolitan (SMM), or 4) nonmetropolitan (NM). We also assigned counties to one of 

six US climate regions. Negative binomial regression was used to examine trends in HSI ED visits 

over time across all counties and by urbanicity for each climate region, adjusting for pertinent 

variables. During 2005–2010, there were 98,462 HSI ED visits in the 14 states. ED visits for HSI 

decreased 3.0 % (p < 0.01) per year. Age-adjusted incidence rates of HSI ED visits increased from 

most urban to most rural. Overall, ED visits were significantly higher for NM areas (IRR = 1.41, p 

< 0.01) than for LCM areas. The same pattern was observed in all six climate regions; compared 

with LCM, NM areas had from 14 % to 90 % more ED visits for HSI. These findings of 

significantly increased HSI ED visit rates in more rural settings suggest a need to consider HSI ED 

visit variability by county urbanicity and climate region when designing and implementing local 

HSI preventive measures and interventions.
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Introduction

The relationship between environmental exposure to extreme heat and mortality is well 

established [1, 2]. An increasing number of studies have also established a link between 

extreme heat and morbidity. Periods of extreme heat are often followed by increases in all-

cause hospitalizations [3]; cause-specific hospitalizations, such as renal [3–5], respiratory [3, 

4, 6–8], and cardiovascular diseases [4, 5, 7]; mental health issues [4]; and heat-related 

illness, also known as heat stress illness (HSI) [4, 5, 8, 9]. HSI includes various heat-related 

disorders, ranging from heat cramps (most mild) and heat syncope to heat exhaustion and 

heat stroke (most severe) [10].

Heat-related morbidity is an emerging public health concern. Research has focused on risk 

factor analyses and recommendations for preventive measures and interventions. Previous 

studies have identified groups at increased risk for HSI or heat-related death from extreme 

heat exposures [5, 9, 11–19]. These include the elderly, the very young, men, populations 

without access to air conditioning, persons with chronic medical problems, and those taking 

certain medications. Although these groups are at higher risk, any person can develop HSI 

following extreme heat exposure, and prevention is the most effective intervention against 

HSI [10]. Because the Intergovernmental Panel on Climate Change projects that more 

frequent, more intense heat waves will occur over a wider geographic area due to climate 

change [20], public health preventive measures and interventions to protect populations 

from HSI might become even more important and relevant in the coming decades and 

beyond.

Many locales that have experienced substantial mortality and morbidity from heat waves 

have developed community warning systems and heat emergency response plans to prepare 

for future extreme heat emergencies [21–25]. Response plans that consider at-risk persons, 

integrate meteorological information, and promote individual protective behaviors are likely 

to be effective in reducing heat-related morbidity and mortality [26]. However, locally 

tailored intervention strategies are needed. Climate change is projected to produce extreme 

heat events at varying spatial scales, and affected communities may increasingly vary by 

demographics, climate, and geography [20, 26].

One local factor rarely considered in HSI studies is county urbanicity (i.e., urban–rural 

classification). Many prevention efforts included in community preparation and response 

plans that are aimed at reducing HSI have been developed for urban settings [26]. However, 

two recent studies, one focusing on North Carolina [9] and the other using a sample of US 

hospital-based emergency departments (EDs) participating in the Healthcare Cost and 

Utilization Project [15], have found higher ED visit rates in rural counties than in urban 

counties. HSI encompasses many clinical outcomes that often are severe enough to warrant 

treatment (e.g., hyperthermia, heat exhaustion, and heat stroke) [10]. Consequently, EDs 

provide a valuable source of HSI data that can be consistently tracked across space and time 
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for heat-related health surveillance [5, 27]. County-level data on monthly number of HSI ED 

visits (for May through September) are available from the Centers for Disease Control 

(CDC) National Environmental Public Health Tracking Program (Tracking Program), 

allowing for multi-state, multi-region trend analyses over time [28].

The objectives of this study were to describe temporal and geographic trends in HSI ED 

visits and describe variability by urbanicity, overall and by US climate region. 

Understanding how HSI ED visits have changed over time and vary by geography can help 

guide decisions about how HSI prevention measures and intervention strategies could be 

modified based on regional characteristics, local demographics, and urbanicity.

Methods

Data Sources

The Tracking Program receives data from 18 states for HSI ED visits occurring May 1 

through September 30. We obtained county-level monthly HSI ED visit counts for 2005–

2010 by sex and age group from the 14 states that had complete data [29]. Those states were 

California, Connecticut, Florida, Iowa, Maine, Massachusetts, Minnesota, Missouri, New 

Jersey, New York, South Carolina, Utah, Vermont, and Wisconsin. The remaining 4 states 

were missing one or more years of HSI ED visit data from 2005–2010 and were therefore 

not included in analysis. The data included ED visits occurring May 1 through September 30 

for each year 2005–2010, having any International Classification of Diseases, 9th Revision, 

Clinical Modification (ICD-9-CM) code in the range of 992.0–992.9 (effects of heat and 

light) or cause of injury code E900.0 (excessive heat due to weather conditions) or E900.9 

(excessive heat of unspecified origin), excluding ED visits with a code of E900.1 (heat of 

man-made origin), listed as the primary or any other diagnosis. Age was categorized as 0–4, 

5–14, 15–34, 35–64, and ≥65 years. County population data were obtained from the US 

Census Bureau via the Tracking Program. Intercensal estimates were used for 2005–2009, 

and the decennial censal estimate was used for 2010 [30].

We used the National Center for Health Statistics (NCHS) 2013 Urban–Rural Classification 

Scheme for Counties as the measure of county urbanicity. This scheme is the only nationally 

consistent urban–rural classification that separates counties in metropolitan statistical areas 

(MSAs) of 1 million or more in population into two groups shown to vary in some measures 

of health status; the division is based on the containment of, or being contained by, the 

population of the largest principal city in the MSA [31]. The classification scheme was 

downloaded from the CDC website [32], and the six NCHS urban–rural categories were 

collapsed into four categories: large central metropolitan (LCM), large fringe metropolitan 

(LFM), small–medium metropolitan (SMM), and nonmetropolitan (NM).

Data on annual percent of people in poverty by county were obtained from the US Census 

Bureau American Community Survey via the Tracking Program for 2005–2010 [33].

Climate region classification was obtained from the National Oceanic and Atmospheric 

Administration (NOAA) National Climatic Data Center’s US Climate Regions map. The 
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map delineates nine regions of the contiguous US that are each climatically consistent [34, 

35].

Hourly meteorological predictions from the North American Land Data Assimilation 

System Phase 2 (NLDAS) model [36], available at 0.125 degrees grid resolution, were made 

available to the Tracking Program as part of an interagency agreement between CDC and 

National Aeronautics and Space Administration. We used a multi-stage geo-imputation 

approach to convert grid-level meteorological data to county-level estimates. We first 

calculated the population within each NLDAS grid cell using 2010 population estimates by 

US Census blocks. We then converted NLDAS grid polygons with population information 

to centroids and related all the grid cell centroids to the counties in the conterminous US 

based on a containment relationship. If a county did not have a grid cell centroid within its 

boundary, we assigned a grid cell centroid closest to the county boundary. Finally, we 

created a population-weighted average from all the grid cell centroids to obtain county-level 

estimates of daily maximum heat index using temperature and relative humidity information 

[37]. We used the daily estimates to calculate the county-level monthly mean maximum heat 

index in degrees Fahrenheit for May–September, 2005–2010.

The final urban–rural classification, annual percent of people in poverty, climate region, and 

monthly mean maximum heat index were merged with the ED visit data by state and county 

Federal Information Processing Standard codes.

Analyses

We used population data from the US Census Bureau to calculate crude incidence rates of 

HSI ED visits per 100,000 population. Age-adjusted incidence rates were calculated by the 

direct method using weights from the 2000 US standard population [38] and 18 age groups 

defined by the World Health Organization [39].

For temporal and geographic trends, we made univariate regression models for month, year, 

sex, age group, county urbanicity, percent of people in poverty, climate region, and monthly 

mean maximum heat index as predictors of number of monthly ED visits by county. We 

used variables significantly associated (at the p = 0.05 level) with number of monthly HSI 

ED visits on univariate analyses to construct multivariable regression models. The models 

were used to examine temporal and geographic trends in the number of monthly HSI ED 

visits at the county level. For temporal trends, we examined monthly and yearly trends 

across all counties, adjusting for sex, age group, urbanicity, poverty, climate region, and 

monthly mean maximum heat index. We also examined geographic trends by urbanicity for 

each climate region, adjusting for month, year, sex, age group, poverty, and monthly mean 

maximum heat index.

Rate regression models using SAS PROC GENMOD were used with a negative binomial 

log link to compensate for overdispersion in the number of monthly HSI ED visits. All 

models included population offset and accounted for repeated measures at the county level 

using the autoregressive AR(1) correlation structure. Backward elimination was used for 

model building. Confounding was determined by ≥10 % change in beta coefficients of the 

primary predictor. Model fits were compared using the quasi-likelihood under the 
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independence model criterion [40]. All analyses were performed using SAS 9.3 (Cary, NC, 

USA).

Results

The 14 states included in the analysis covered six climate regions (Southeast, Northeast, 

Southwest, West, Upper Midwest, and Ohio Valley) (Figure 1) and included 708 counties, 

with all four urbanicity categories represented in each climate region (Figure 2). Data were 

not available from states in the Northwest, Northern Rockies and Plains, and South climate 

regions.

During May 1–September 30 of years 2005–2010 there were 98,462 ED visits with HSI as 

the primary or any other diagnosis (Table 1). The overall crude incidence rate was 32.2 per 

100,000 person-years, and the overall age-adjusted incidence rate was 31.9 per 100,000 

person-years. Males accounted for 66.6 % of the HSI ED visits. The age-adjusted incidence 

rate was 43.5 per 100,000 person-years for males and 20.7 per 100,000 person-years for 

females. The 15–34 years age group had the highest age-adjusted incidence rate among all 

age groups (41.8 per 100,000 person-years). The lowest age-adjusted incidence rate was 

among children aged 0–4 years (9.7 per 100,000 person-years). The lowest age-adjusted 

incidence rate by year was in 2009 (25.1 per 100,000 person-years), and the highest was in 

2010 (38.0 per 100,000 person-years). The year 2006 accounted for a similar proportion of 

HSI ED visits as 2010 (19.2% for 2006 and 20.1% for 2010), and 2006 had a similar age-

adjusted incidence rate as 2010 (37.2 per 100,000 person-years for 2006), compared to the 

other years. By month, July accounted for the largest proportion of HSI ED visits (34.3 %). 

July also had the highest age-adjusted incidence rate (53.9 per 100,000 person-years). By 

climate region, age-adjusted incidence rates ranged from 19.5 per 100,000 person-years in 

the Southwest to 67.6 per 100,000 person-years in Ohio Valley. Age-adjusted incidence 

rates increased from most urban to most rural. LCM had the lowest age-adjusted incidence 

rate (22.1 per 100,000 person-years) and NM had the highest (48.8 per 100,000 person-

years).

Table 2 presents the multivariable regression model results. After adjusting for month, year, 

age group, urbanicity, percent of people in poverty, climate region, and monthly mean of 

daily maximum heat index, the rate of HSI ED visits for females was 29 % lower than the 

rate for males, and this was statistically significant (p < 0.01). Two age groups had 

statistically significantly higher HSI ED visit rates than the reference age group of 35–64 

years, after adjusting for covariates; the 15–34 years age group had a 39 % higher ED visit 

rate (p < 0.01), and the ≥65 years age group had a 14 % higher ED visit rate (p < 0.01).

Overall, HSI ED visits decreased a significant 3.0 % (p < 0.01) per year (Table 2). 

Compared with the reference year 2005, 2006 had a 16 % higher HSI ED visit rate, and 

2010 had a 7 % higher ED visit rate. Both rates were statistically significant after adjusting 

for covariates (p < 0.01). In sensitivity analysis where year 2010 data were excluded, this 

significant decrease in HSI ED visits increased to 5.9 % per year (p < 0.01). Compared with 

the reference month of May, three months (June, July, and August) had statistically 
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significantly higher HSI ED visit rates. Of these, June and July had substantially higher rates 

than May (up to 40 % higher for June).

Figure 3 shows climate region–specific age-adjusted rates of HSI ED visits over time. All 

climate regions except the West had overall decreasing annual rates during 2005–2009, 

followed by an increase in 2010. Figure 4 shows climate region–specific age-adjusted rates 

of HSI ED visits by month. The rates peak in most climate regions in July. The Ohio Valley 

and Southeast climate regions had substantially higher peak rates than other climate regions 

in July and August, respectively.

Table 3 shows multivariable regression model results for geographic trends by urbanicity 

and climate region. Overall, after adjusting for month, year, sex, age group, poverty, climate 

region, and monthly mean maximum heat index, LFM had lower HSI ED visits compared to 

LCM, and SMM had higher HSI ED visits than LCM, although these were not statistically 

significant. Overall, visits were 41 % significantly higher in NM than LCM (p < 0.01). 

Three of the six climate regions showed a similar pattern, with varying statistical 

significance. In the Southeast and Northeast, SMM had a significantly higher ED visit rate 

than LCM (22 % higher and 17 % higher, respectively), and NM had a significantly higher 

HSI ED visit rate than LCM (39 % higher and 73 % higher, respectively) (all p < 0.01). In 

the Southwest, LFM had a 17 % significantly lower HSI ED visit rate (p < 0.01), and NM 

had a 49 % significantly higher HSI ED visit rate (p < 0.01) than LCM. The West differed 

from the overall pattern, with SMM having significantly lower HSI ED visits (p = 0.02) than 

LCM. However, similar to the overall pattern, NM had 90 % significantly higher HSI ED 

visits (p < 0.01) than LCM. Upper Midwest and Ohio Valley patterns also differed from the 

overall pattern but were similar to each other. Although not statistically significant, Upper 

Midwest and Ohio Valley LFM had higher HSI ED visits and SMM had lower HSI ED 

visits than LCM. However, similar to the overall pattern, NM in both of these climate 

regions had significantly higher HSI ED visits than LCM: 14 % higher (p = 0.02) and 15 % 

higher (p < 0.01), respectively. Figure 5 shows climate region–specific age-adjusted rates of 

HSI ED visits by year and urbanicity. All climate regions had higher age-adjusted incidence 

rates in more rural counties compared with the most urban counties. Figure 6 shows climate 

region–specific age-adjusted rates of HSI ED visits by month and urbanicity. In most 

climate regions, peak HSI ED visit rates occurred in July.

Discussion

HSI is the most common cause of ED visits from environmental exposure-related injuries in 

the US [41]. In an analysis of six US climate change–related events, the health costs of a 

single event, the 2006 heat wave in California, exceeded $5.3 billion [42]. HSIs represent an 

opportunity to create and implement prevention measures to reduce morbidity and mortality 

and prevent the economic costs associated with extreme heat events [43]. This study 

summarizes the temporal and geographic trends by urbanicity of HSI ED visits in 14 

Tracking Network states across six climate regions. The results identify the importance of 

considering local and regional factors when developing extreme heat event preventive 

measures and interventions.
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Males consistently have been shown to have a higher risk for HSI ED visits or 

hospitalizations after an extreme heat exposure [9, 15, 17, 41]. In the current study, males 

had an age-adjusted HSI ED visit incidence rate more than twice that of females. This 

difference is thought to be related to recreational and occupational exposure differences 

between males and females [41]. Similarly, recreational and occupational differences among 

age groups might be responsible for the highest age-adjusted incidence rate in the 15–34 

years age group, which had 39 % higher HSI ED visits than the 35–64 years age group. This 

is consistent with work-related and sports-related increases in HSI reported in other studies 

[18, 41]. Our results are also consistent with previous studies that show adults aged ≥65 

years are also at increased risk for HSI [5, 15, 18].

Although an overall significant downward trend in HSI ED visits was seen over time, HSI 

ED visits increased significantly in 2010. This pattern was consistent across all climate 

regions except the West, and to a lesser degree the Southwest. Warmer than average 

temperatures affected the eastern US in the spring and summer of 2010 [44], while the West 

Coast was cooler than normal, compared with the same periods during 1951–1980 [45, 46]. 

In addition, the HSI ED visit incidence rate peak in the West climate region in 2006 might 

be reflective of the July 2006 California heat wave [5]. The sensitivity analysis suggests that 

inclusion of year 2010 data dampens the overall average decrease in HSI ED visits per year. 

Therefore, when data become available, future analyses could include more years of ED 

data. Incorporating additional years before 2005 and after 2010 could show if the overall 

decrease in HSI ED visits is part of a long-term decreasing trend, despite the changing 

climate, or if the sudden increase in 2010 is suggestive of an overall increase over a longer 

period that is not apparent using these six years of data.

Interpretation of HSI ED visit rates should also be made in the context of regional climate to 

account for the influence of broader climate variability leading to local differences in 

observed HSI ED visit rates within a region. In addition, although data for this study were 

limited to six climate regions, NOAA’s National Climatic Data Center has classified the 

contiguous U.S. into nine climatically consistent regions [34, 35]. The Ohio Valley climate 

region had the highest HSI ED visit incidence rates. This high incidence rate might be 

explained by the Ohio Valley climate region including only one Tracking Network state, 

Missouri, where hyperthermia (defined as a physician-diagnosed case of heat exhaustion or 

heat stroke) is a reportable condition [47]. However, sensitivity analyses that excluded 

Missouri from the multivariate analyses showed no substantial differences in temporal or 

geographic trends of HSI ED visits, compared with when Missouri was included in the 

analyses. The Southeast climate region had the second highest age-adjusted incidence rate. 

That rate was substantially different from the remaining four climate regions. This finding is 

consistent with a recent trend analysis of HSI hospitalizations [48], further demonstrating 

the importance of considering regional factors in the prevention of HSI, even when 

accounting for known risk factors such as age and sex.

Previous studies suggest that urban residents are more likely than rural residents to be 

hospitalized or die after an extreme heat event [49, 50] or be admitted to the hospital or die 

in the ED from HSI [15]. Public health intervention measures aimed at reducing HSI are 

well described. Examples include developing heat wave warning systems, increasing 
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availability of cool environments by providing air-conditioned cooling centers (malls, 

recreation facilities, and community centers), and extending opening hours of public 

swimming pools and other public facilities. Other examples include community-based 

programs to check on elderly residents or those who live alone to ensure precautionary 

measures are taken, built environment modifications (such as increased ventilation and using 

colors that decrease heat retention), and public education and messaging on personal 

behavioral changes such as increasing fluid intake and limiting outside activity during 

daytime hours [13, 26, 43]. These prevention measures have been implemented after notable 

heat waves have affected large urban areas and have largely focused on non-rural 

environments [26, 43]; therefore, many of these measures are more easily implemented in 

urban areas where access and travel to areas of relief are aided by public transportation and 

advertisement of personal behavioral measures might be more prominent.

The current study found that age-adjusted HSI ED visit rates in the included Tracking states 

were higher in rural counties than in urban counties. Consistent with two recent studies [9, 

15], HSI ED visit rates in the most rural counties were significantly higher than in the most 

urban counties, both overall (across all climate regions) and within each of the six climate 

regions. Potential factors explaining increasing HSI ED visit rates with decreasing 

urbanicity include occupational or recreational differences that result in more outdoor 

exposure in rural areas [9, 18], air conditioning prevalence or use in homes or public places, 

or local temperature and precipitation patterns. In addition, persons in rural areas might have 

less access or exposure to interventions aimed at HSI prevention. They might, for example, 

be less willing or able to travel longer distances to reach cooling respite areas and services 

or participate in community organized HSI prevention programs. They also might have less 

access to medical oversight or care of chronic medical conditions that increase the risk for 

HSI. As a result, they would have less opportunity learn from healthcare providers about 

prevention strategies recommended by the American Medical Association [13]. Another 

possibility is rural residents might visit EDs more frequently for less severe HSI 

manifestations, as evidenced by urban residents having higher odds of hospital admission or 

death in the ED following an HSI ED visit [15].

One benefit of using the NCHS Urban-Rural Classification Scheme is the separation of 

MSAs into central and fringe categories. As in the NCHS categorization, we chose to keep 

the separation of LCM and LFM. Testing of the NCHS categorization in its ability to 

identify health differences across urbanization levels repeatedly showed LCM and LFM 

residents differed substantially on multiple health measures, including health status, health 

access, and health-related behaviors [31]. We chose to combine the NCHS categories of 

medium metropolitan and small metropolitan into SMM and the micropolitan and noncore 

categories NM, because the members of these pairs faired more similarly in measures of 

health status than LCM and LFM. In the current analyses, we found no significant difference 

in HSI ED visits between LCM and LFM overall, nor for five of the six climate regions for 

the health measure being studied. One potential reason could be because access to HSI 

prevention and intervention measures might be similar between centrally located urban areas 

and fringe areas, which are typically suburban communities. The Southwest climate region 

was the only region that had significantly lower HSI ED visits in LFM than LCM. That 

finding underscores the importance of considering climate region variability in HSI studies.
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A strength of the current study is the use of population-based ED data that provide statewide 

representation for all included states. Additional strengths include temporal trend analysis to 

identify patterns over time, inclusion of climate region and reporting of climate-region–

specific results in addition to overall results, and demonstrated use of Tracking Network 

surveillance data.

The current study also has a few key limitations. Individual data were not available; 

therefore, as an ecologic study, we cannot control for other factors known to be associated 

with HSI ED visits on an individual level or if the ED visit was associated with an extreme 

heat event. ED data were available only for the 18 Tracking Network states that provide that 

information to the Tracking Program, which did not include all climate regions. Complete 

2005–2010 data were available for 14 of these 18 Tracking Network states. In some cases, 

data were available for only one state in a climate region. Therefore, results might not be 

representative of the entire climate region. General limitations of ED-based data using 

ICD-9-CM codes also apply. Because a race/ethnicity variable often is not included or is 

unreliable, it was not available for analyses. ED data only capture information on those who 

seek care, so results might best represent the more severe forms of HSI (e.g., heat 

exhaustion, heat stroke). Use of ICD-9-CM codes are used primarily for billing purposes, so 

reimbursement rates could influence providers’ choice of ICD-9-CM codes. An ICD-9-CM 

code for HSI does not guarantee HSI was the cause of the ED visit, and ED visits are 

ascribed to the patients’ residential address, which may or may not be where the patient 

developed HSI. Transfers between EDs for the same HSI event might vary by geographical 

area, which could impact HSI rates. Additionally, the number of EDs in operation could 

change over time.

Conclusions

Population-based ED data are valuable for trend analyses over time and space for health 

outcomes that often require medical care. The current study uses ED data from 14 Tracking 

Program states across six climate regions to examine temporal and geographic trends in HSI 

ED visits. The significantly increased HSI ED visit rates in more rural settings identify the 

need to consider HSI ED visit variability by county, urbanicity, and climate region in 

implementing effective HSI prevention techniques, especially in rural areas. A potentially 

useful strategy might be to locally adapt interventions originally geared for urban settings. 

Although forecasters consider local climatological conditions and community acclimation 

when issuing heat wave warnings [4], public health professionals might consider HSI 

variation by urbanicity and climate region when developing local HSI preventive measures 

and interventions. Further analyses that include additional years of data could help interpret 

the increase in HSI ED visits in 2010 in a long-term perspective.
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Fig. 1. 
The 14 National Environmental Public Health Tracking states across 6 NOAA National 

Climatic Data Center US Climate Regions used in the analysis
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Fig. 2. 
County urbanicity breakdown of 14 National Environmental Public Health Tracking states, 

by climate region
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Fig. 3. 
Annual age-adjusted incidence rates for emergency department visits for heat stress illness 

by climate region over time in 14 National Environmental Public Health Tracking states, 

2005–2010
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Fig. 4. 
Monthly age-adjusted incidence rates for emergency department visits for heat stress illness 

by climate region in 14 National Environmental Public Health Tracking states, 2005–2010

Fechter-Leggett et al. Page 16

J Community Health. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Annual age-adjusted incidence rates for emergency department visits for heat stress illness 

by county urbanicity (LCM = large central metropolitan, LFM = large fringe metropolitan, 

SMM = small–medium metropolitan, and NM = nonmetropolitan) in 14 National 

Environmental Public Health Tracking states, 2005–2010, by climate region (A = Southeast, 

B = Northeast, C = Southwest, D = West, E = Upper Midwest, F = Ohio Valley)
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Fig. 6. 
Monthly age-adjusted incidence rates for emergency department visits for heat stress illness 

by county urbanicity (LCM = large central metropolitan, LFM = large fringe metropolitan, 

SMM = small–medium metropolitan, and NM = nonmetropolitan) in 14 National 

Environmental Public Health Tracking states, 2005–2010, by climate region (A = Southeast, 

B = Northeast, C = Southwest, D = West, E = Upper Midwest, F = Ohio Valley)
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Table 1

Characteristics and incidence rates for emergency department visits for heat stress illness in 14 National 

Environmental Public Health Tracking states, 2005–2010

Number of heat stress 
illness emergency 
department visits

Proportion of HSI ED 
visits (%)

Crude incidence rate 
(per 100,000 person-

years)

Age-adjusted 
incidence rate (per 

100,000 person-years)

Overall 98,462 100 32.2 31.9

Sex

 Male 65,562 33.4 43.6 43.5

 Female 32,900 66.6 21.1 20.7

Age group (years)

 0–4 1,918 1.9 9.7 9.7

 5 to 14 6,854 7.0 17.0 16.7

 15–34 35,250 35.8 41.9 41.8

 35–64 39,327 39.9 32.4 32.8

 65 or older 15,113 15.3 37.7 37.3

Year

 2005 16,975 17.2 33.9 33.7

 2006 18,947 19.2 37.6 37.2

 2007 15,570 15.8 30.7 30.4

 2008 14,113 14.3 27.6 27.3

 2009 13,035 13.2 25.3 25.1

 2010 19,822 20.1 38.2 38.0

Month

 May 8,085 8.2 13.0 13.0

 June 22,329 22.7 37.2 36.9

 July 33,770 34.3 54.5 53.9

 August 25,463 25.9 41.1 40.8

 September 8,815 9.0 14.7 14.6

Climate region

 Southwest 1,258 1.3 19.1 19.5

 Upper Midwest 8,396 8.5 24.1 24.0

 Northeast 24,972 25.4 24.9 24.5

 West 24,297 24.7 26.5 26.5

 Southeast 29,622 30.1 51.5 51.9

 Ohio Valley 9,917 10.1 66.8 67.6

Urbanicity

 Large central metropolitan 26,541 27.0 22.2 22.1

 Large fringe metropolitan 23,880 24.3 31.5 31.5

 Small–medium metropolitan 34,965 35.5 42.0 42.0

 Nonmetropolitan 13,076 13.3 47.9 48.8
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Table 2

Incidence rate ratio stratified by covariates for the 14 National Environmental Public Health Tracking states, 

2005–2010

IRR 95% CI p-value

Sex

 Male referent

 Female 0.71 0.69–0.72 <0.01

Age group (years)

 0–4 0.28 0.25–0.30 <0.01

 5–14 0.51 0.48–0.54 <0.01

 15–34 1.39 1.35–1.44 <0.01

 35–64 referent

 ≥65 1.14 1.07–1.21 <0.01

Year

 Overall 0.97 0.96–0.98 <0.01

 2005 referent

 2006 1.16 1.13–1.19 <0.01

 2007 0.98 0.95–1.00 0.08

 2008 0.92 0.90–0.95 <0.01

 2009 0.84 0.81–0.87 <0.01

 2010 1.07 1.03–1.10 <0.01

Month

 Overall 0.83 0.81–0.84 <0.01

 May referent

 June 1.40 1.36–1.45 <0.01

 July 1.37 1.31–1.45 <0.01

 August 1.07 1.02–1.13 0.01

 September 0.55 0.51–0.59 <0.01

Climate region

 Southeast 1.07 0.89–1.29 0.45

 Northeast 1.57 1.36–1.82 <0.01

 Southwest 1.00 0.86–1.17 0.99

 West 1.21 1.02–1.43 0.03

 Upper Midwest referent

 Ohio Valley 1.51 1.29–1.76 <0.01

Urbanicity

 Large central metropolitan referent

 Large fringe metropolitan 0.94 0.86–1.02 0.13

 Small–medium metropolitan 1.06 0.99–1.13 0.07

 Nonmetropolitan 1.41 1.31–1.52 <0.01

Percent of people in poverty 1.01 1.00–1.02 0.13

Monthly mean maximum heat index 1.07 1.06–1.07 <0.01
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IRR = incidence rate ratio, CI = confidence interval
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